Download in PDF  

Payam Siyari

Mailing Address: 
Uber ATG
579 20th Street 
San Francisco, CA 94107 
USA 

Citizenship: 
Iranian (U.S. Permanent Resident) 
 

Senior Data Scientist, Uber Advanced Technologies Group

  Gmail payamsiyari@gmail.com   linkedin.com/in/payamsiyari LinkedIn  
  Web  www.payamsiyari.com   github.com/payamsiyari       Github  
      goo.gl/4dwxgx        Google Scholar  
 

EDUCATION


 

- PhD, Computer Science  

       (Atlanta, GA)  2014 - 2018
    College of Computing, Georgia Institute of Technology
   

    Thesis: Optimization-Driven Emergence of Deep Hierarchies w. Applications in Data mining & Evolution

Payam Siyari

 

- MSc, Computer Science - Machine Learning

(GPA: 4.0/4.0) (Atlanta, GA) 2014 - 2016
    College of Computing, Georgia Institute of Technology
 

    Coursework: Machine Learning, Deep Learning for Perception, Natural Language Processing, Data and Visual Analytics, High Performance Computing, Time Series Analysis, Regression.

 
 

- MSc, Computer Engineering - Software Eng.

(GPA: 19.24/20.00) (Tehran, Iran) 2011 - 2013
    Department of Computer Engineering, Sharif University of Technology

AREAS OF INTEREST

- Data Science & Machine Learning
- Maps & Geospatial Data Science
- Natural Language Processing
- Graph & Sequence Mining
- Ads & Recommender Systems

      Thesis: Network Topology Inference from Incomplete Data
    Coursework: Statistical Pattern Recognition, Data Mining, Convex Optimization, Game Theory.
 

- BSc, Computer Science  

(GPA: 18.46/20.00)     (Tehran, Iran) 2007 - 2011
    Department of Mathematical Sciences, Shahid Beheshti University
 

PROFESSIONAL EXPERIENCE


 

Senior Data Scientist
- Data Scientist II

Uber ATG

(San Francisco, CA)

2020 - Present
2018 - 2019

SKILLS

- Python, Java, C++, Swift
- PyTorch, Tensorflow, Keras, NLTK, NetworkX, SNAP
- Hive, Spark, Pig  
- SQLite, PostgreSQL, MySQL
- MATLAB, OpenMPI, R 
- React JS, Django, DASH,
- Bokeh, D3

 

  - Full-Stack Data Scientist
      - Deep Learning: GeoSpatial representation learning, involving CNNs on satellite image data, RNNs on temporal trip data and GNNs on road networks.
      - Data Structures and Algorithms: GeoSpatial joins and indexing, including Uber UMM, Uber H3, S2 Geometry.
      - Data Engineering: Advanced SQL, Relational schema design, BigData pipeline development (Hive, Spark).
      - Statistical Analysis: A/B testing, Utilizing statistical testing for strategic decision making e.g. minimum amount of miles needed for deploying service.
      - Data Visualization, Analytics and Dashboarding: DASH, Bokeh.
  - @UberEnginnering Showcase:
      - Power On: Accelerating Uber’s Self-Driving Vehicle Development with Data
      - Searchable Ground Truth: Querying Uncommon Scenarios in Self-Driving Development

   

Software Engineering Intern

Uber ATG (Pittsburgh, PA) Fall 2017
   

  - Self-Driving Technology Engineer (Road Analytics)

   

Research Assistant

Georgia Tech (Atlanta, GA) 2014-2018
   

  - Research on Analysis and Modeling of Hierarchical Structures within Big Data.
  - Applications in Sequential Pattern Mining, Feature Extraction, Compression & Evolution.

   

Research Intern

Xerox XRCE (Grenoble, France) Fall 2015
   

  - Research on MDL-Based Grammatical Inference from Sequential Data.
  - Applications in Compression & Unsupervised Parsing of Natural Language.

   

Research Assistant

Sharif University (Tehran, Iran) 2011 - 2013
   

  - Research on Network Inference via NMF and Compressed Sensing.
  - Research on Epidemic Models over Multilayer Networks.

   

iOS Developer

Pichak co. (Tehran, Iran) 2011
   

  VPN in Touch: A VPN account management app (client side).

   

PUBLICATIONS


   

  - P. Siyari, B. Dilkina, C. Dovrolis, “Evolution of Hierarchical Structure and Reuse in iGEM Synthetic DNA Sequences”, International Conference on Computational Science (ICCS), 2019.

  - P. Siyari, B. Dilkina, C. Dovrolis, “Emergence and Evolution of Hierarchical Structure in Complex Systems”, Springer Proceedings in Complexity: Dynamics On and Of Complex Networks III - Machine Learning and Statistical Physics Approaches, 2018.

  - P. Siyari, M. Galle ́, “The Generalized Smallest Grammar Problem”, In Proceedings of International Conference on Grammatical Inference (ICGI), 2017.

  - P. Siyari, B. Dilkina, C. Dovrolis, “Lexis: An Optimization Framework for Discovering the Hierarchical Structure of Sequential Data”, In Proceedings of ACM SIGKDD, 2016 (Oral Presentation - Acceptance Rate: 8.9%).

  - M. Salehi, P. Siyari, M. Magnani, D. Montesi, “Multidimensional Epidemic Thresholds in Diffusion Processes over Interdependent Networks”, In Chaos, Solitons & Fractals, 2015. 

  - M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, D. Montesi, “Spreading Processes in Multilayer Networks”, In IEEE Trans. Network Science and Engineering, 2015.

  - A. Fattaholmanan, H. R. Rabiee, P. Siyari, A. Khodadadi, and A. Soltani-Farani, “A Peer to Peer Compressive Sensing Framework for Network Monitoring”, In IEEE Communications Letters, 2015. 

  - P. Siyari, H. R. Rabiee, M. Salehi, and M. Eslami, “Network Reconstruction under Compressive Sensing”, In Proc. ASE/IEEE International Conference on Social Informatics, Dec. 2012.

Last Updated: March 2020